A novel ToF-SIMS operation mode for improved accuracy and lateral resolution of oxygen isotope measurements on oxides
نویسندگان
چکیده
Oxygen isotope exchange with subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a highly valuable tool for determining oxygen diffusion coefficients in oxides. Since ToF-SIMS analysis enables an elemental and chemical mapping, it can also be used to visualize oxygen exchange-active zones by determining the local oxygen isotopic fraction. However, measuring accurate isotopic fractions can be a challenging analytical task owing to secondary ion interaction and signal saturation, particularly when dealing with high secondary ion intensities as commonly found when analyzing oxygen ions from oxides. It is shown that in many cases the calculated O fraction erroneously shifts to higher values and can lead to systematic errors in the determination of diffusion coefficients. A novel ToF-SIMS operation mode, called “Collimated Burst Alignment” (CBA) mode, is therefore introduced to enable a more accurate determination of oxygen isotopic fractions with an optimized lateral resolution of sub100 nm. Both improvements are rendered possible by a modified beam guidance in the primary ion gun. This modification reduces detector dead time effects and ion interactions to a minimum and secondary ion intensities can be obtained more accurately. The result of this optimization is demonstrated in measurements of the natural isotope abundance of several different oxides including SrTiO3 and Sr-doped LaCoO3.
منابع مشابه
A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance☆
A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compare...
متن کاملDetection of ZrO2 Nanoparticles in Lung Tissue Sections by Time-of-Flight Secondary Ion Mass Spectrometry and Ion Beam Microscopy
The increasing use of nanoparticles (NP) in commercial products requires elaborated techniques to detect NP in the tissue of exposed organisms. However, due to the low amount of material, the detection and exact localization of NP within tissue sections is demanding. In this respect, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Ion Beam Microscopy (IBM) are promising techniques...
متن کاملHigh-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation
A high-precision SIMS analysis technique has been established for oxygen, sulfur, and iron isotope ratios and applied to a wide range of geoscience research areas using a Cameca IMS-1280 at the Wisconsin Secondary Ion Mass Spectrometer Laboratory (WiscSIMS). Precision and accuracy of 0.3‰ is achieved routinely for the measurement of 18O/16O ratio using multicollection Faraday Cup (FC) detectors...
متن کاملTOF-SIMS in Cosmochemistry
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was introduced into cosmochemistry about a decade ago. Major advantages of TOF-SIMS compared to other ion microprobe techniques are (a) parallel detection of all secondary ions with one polarity in a single measurement – both polarities in subsequent analyses, (b) high lateral resolution, (c) sufficient mass resolution for separation of ...
متن کاملHigh-resolution TOF with RPCs
In this work, we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps s with a detection...
متن کامل